durée: 2h

Exercice 1 (14 points).

On se propose de déterminer l'ensemble des fonctions f telles que :

$$(P) \quad f:]0, +\infty[\to \mathbb{R} \ , \ f \ \text{est d\'erivable sur} \]0, +\infty[\ \text{et} \ , \ \forall x>0, f(\frac{1}{4x})=f'(x).$$

1. Préambule:

- (a) Montrer que la fonction $\alpha: x \mapsto \sqrt{x}$ est solution de (P).
- (b) Déterminer l'ensemble des fonctions de $\mathbb R$ dans $\mathbb R$ qui sont solutions de l'équation différentielle :

$$(F)$$
: $4Y''(t) - 4Y'(t) + Y(t) = 0$

- 2. **Analyse** : On suppose dans cette question que f est une fonction vérifiant (P).
 - (a) Justifier que f' est dérivable sur $]0, +\infty[$
 - (b) Démontrer que la fonction f est alors solution de l'équation différentielle :

$$(E): y''(x) + \frac{1}{4x^2}y(x) = 0, \quad \forall x > 0$$

(cette équation n'étant pas à coefficients constants, on ne cherchera pas à la résoudre directement)

- (c) On introduit la fonction g définie sur \mathbb{R} par $g(t) = f(e^t)$. On admet que g est deux fois dérivable sur \mathbb{R} . Montrer que g est solution de l'équation différentielle $(F): 4Y''(t) - 4Y'(t) + Y(t) = 0, \forall t \in \mathbb{R}$
- (d) En déduire la forme de f(x) pour tout $x \in]0, +\infty[$.
- 3. Synthèse : Déduire des questions précédentes toutes les fonctions solutions du problème (P).

Exercice 2 (14 points).

On considère la fonction donnée par $f(x) = \operatorname{Arctan}(\frac{\sqrt{1-x^2}}{x})$

- 1. Déterminer le domaine de définition, D_f de la fonction f.
- 2. Étudier la parité de f.
- 3. Déterminer le domaine Δ_f sur lequel on peut assurer que f est dérivable et donner une expression simplifiée au maximum de f'(x).

4. Expression simplifiée de f:

- (a) Démontrer que $\forall x \in]0,1], f(x) = Arccos(x).$
- (b) Déterminer, en utilisant des considérations de parité, une expression analogue de f(x) sur le reste de D_f .
- (c) Tracer la courbe représentative de f.
- (d) Résoudre sur D_f l'équation $f(x) = \frac{\pi}{3}$.

Exercice 3 (12 points).

Dans cet exercice, on se place sur l'intervalle $I=]0,+\infty[$.

On considère l'équation différentielle :

$$(E): x^2y''(x) - xy'(x) + y(x) = \ln(x), \ \forall x \in I$$

Soit y une fonction deux fois dérivable sur I.

On pose
$$z(x) = xy'(x) - y(x)$$
.

1. Démontrer que :

nontrer que:
$$x \mapsto y(x)$$
 est solution de (E) si et seulement si $x \mapsto z(x)$ est solution de $(F): xz'(x) - z(x) = \ln(x), \ \forall x \in I$

- 2. Résoudre sur I l'équation homogène $(H): xz^{\prime}(x)-z(x)=0.$
- 3. Soit $g: x \mapsto \frac{\ln(x)}{x^2}$.

 Une primitive de g sur I s'écrit $G: x \mapsto \int^x \frac{\ln(t)}{t^2} dt$. A l'aide d'une intégration par parties, calculer G(x).
- 4. Déterminer alors l'ensemble des solutions de (F).
- 5. En déduire les solutions de (E).(on aura à résoudre une équation différentielle d'ordre 1).