
Written exam n°8

Duration : 2 h 30. The use of any calculating device is forbidden. Any affirmation must be justified.

I - Diffusion of a perfume (33% of the points)
After initially applying perfume locally on the skin on a surface 2x0 × L, we model here 1D diffusion of
perfume molecules in air. Let n(x, t) be the number of perfume molecules per volume of air. Due to slow
evaporation the deposit of perfume liberates perfume molecules within the air on top of the 2x0 × L surface.
We note α the constant number of perfume molecules added per unit of volume and per unit of time within
the air layer of −x0 ≤ x ≤ x0.
We note D the diffusion coefficient of perfume in air, and #”

j n(x, t) the diffusion flux density. We assume that
the plane (O, #”ey, #”ez) is Π+, that is plane of symmetry, for n and for #”

j n.

Q1. Define Fick’s law, then justify that #”
jn(x, t) = jn(x, t) #”ex with jn(x, t) = #”

jn(x, t). #”ex.
Q2. Establish rigorously the material balance for a layer of air between x and x + dx between t and t + dt,
first within x ∈ [−x0, x0], then (without details) for x ∈ R\[−x0, x0].
We now study the diffusion in steady-state. This model will be simplistic but will allow some conclusions.
Q3. Establish the expression of n(x) for x < −x0,−x0 ≤ x ≤ x0 and x > x0, with 6 unknowns that we leave
undetermined for now.
Q4. Demonstrate that if x ∈ [−x0, x0], n(x) = n0 − α

2D
x2.

Q5. Express the number Ṅ of perfume particles that pass from left to right through
the L × h surface at x = +x0 as a function of α, x0, L and h.

A typical bottle of perfume contains 50 mL of liquid perfume of molar mass M ' 100 g.mol−1 and volumetric
mass µ ' 103 kg.m−3. Such a bottle lasts about 6 months, for 2 sprays a day, each spray lasting around 5
hours before completely evaporating. One can estimate h = 5 mm, L = 2 cm and x0 = 1 cm.
Q6. Establish an order of magnitude for α using the given data.
The diffusion coefficient of perfume within air is D ' 3 × 10−5 m2.s−1.
Q7. Estimate the time ∆t for perfume molecules to diffuse over 1 meter of air. Relate your result to everyday
life observations, and to other physical phenomenons.
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II - Scuba diving accident : growth of gas bubbles (67% of the points)

The 3 subparts of this problem are independent.

During scuba diving, the body is exposed to increasing hydrostatic pressure as depth
increases. At higher pressures, more gases dissolve in living tissue. If the diver rises to
the surface very quickly, the gas trapped in the tissues has no time to return to the
blood and lungs, and turns into gas bubbles that can become lethal.
Throughout this study, we suppose that at equilibrium the concentration cN2, eq (in
mol/L) of dissolved N2 within a living tissue is proportional to the partial pressure
PN2 in N2 surrounding this tissue according to Henry’s law : cN2, eq = H × PN2 with
H = 6 × 10−4 mol.L−1.bar−1.

II.1 First estimation of the danger
Q8. Recall the approximate value of the molar fraction of N2 in air, then deduce the approximate value of
cN2, eq(z = 0) for atmospheric pressure P0 = P (z = 0).
Q9. Recall without any demonstration the hydrostatic pressure profile P (z) within water. Determine the
approximate value of cN2, eq(z0) with z0 = 30 m.
We imagine that the diver, initially at equilibrium at z0 = 30 m of depth, suddenly emerges at z = 0. The
total volume of blood of a human being is about V = 5 L. For the following, to get a rough estimation
we consider only the blood, as a closed system. The ideal gas constant will be noted Rig with Rig = 8.3
J.K−1.mol−1.
Q10. Determine the amount (in moles) of N2 gas that appears within the diver’s blood if it instantaneously
reaches its new equilibrium. Using ideal gas law, convert this amount of N2 gas into a volume of gas at
atmospheric pressure, is this volume enough to obstruct a blood vessel ?

II.2 Avoid the accident : the slow diffusion of dinitrogen in living tissues
Usually gas bubbles do not emerge in the blood, which circulates very often through the lungs and thus
adapts quickly its N2 concentration with the surrounding pressure P (z). Therefore we suppose that in blood
for each depth z the concentration in N2 is the one at equilibrium stated by Henry’s law. The diver just
reached the surface consequently that concentration is : cN2, eq = 5 × 10−4 mol/L.

However, in tissues such as cartilage, diffusion limits the transport of N2 : it
takes time for it to diffuse and reach new equilibrium. Note that N2 is not
produced nor consumed by cartilage or any living tissue. We call n(x, t) the
number of gas N2 molecules per m3, and name D the diffusion coefficient of
N2 in cartilage.

Q11. By continuity of n(x, t) in 0 and L, determine the numerical values of n(0) and n(L).
Q12. Without any demonstration, express the differential equation that n(x, t) follows here for x ∈ [0, L].
We look for stationary solutions for n(x, t) − n(0). The plane at x = L

2 is Π+ (a symmetry plane) for both
n(x, t) and #”

j N2 .
Q13. Demonstrate rigorously that n(x, t) can be written as :

n(x, t) = n(0) + Ae−q2
mDt sin(qmx) with qm = π

L
(1 + 2m) for m ∈ N and A an unknown.

Q14. Determine the only value for m that makes sense physically, and justify why by representing graphically
n(x, t) for different m.
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At t = 0, the maximum of concentration of N2 within the cartilage is cN2, eq,z=z0 = 2 × 10−3 mol/L. The
diffusion coefficient of N2 in cartilage is D = 2 × 10−9 m2.s−1 and L = 5 mm.
Q15. Determine the numerical value of A, then define a characteristic time τ for the decay of this excess of
concentration in N2 within cartilage : how long should a diver typically take to reach the surface after diving
at 30 meters ?

II.3 Growth of dinitrogen bubbles in living tissues

We study an isolated bubble of N2 of partial pressure P0N2 and radius R(t). The
evolution of the radius R(t) of the N2 bubble is slow enough for the diffusion of
N2 in the liquid to be in steady-state. n is the number of dissolved molecules of
N2 per m3 within the living tissue (∼ water) with n(r) −→

r→∞
n∞. D is the diffusion

coefficient of the dissolved N2 within the liquid and Vn the molar volume of the
gas, supposed to be constant. We neglect any presence of dioxygen.
To study R(t) we neglect surface tension and give the following law :
◦ Henry’s law : n(R) = HP0N2 with H = 3.6 × 1017 kg−1.s2.m−2

In spherical coordinates for a scalar field n(r) the gradient and Laplacian are written as such :
−−−→
grad n = ∂n

∂r
−→er ∆n = 1

r2
∂

∂r
(r2 ∂n

∂r
)

Q16. Determine n(r) using r, R, n(R) and n∞.
Q17. Using Fick’s law, determine the volume variation rate V̇ of the bubble per unit of time.
Q18. Show that the bubble’s radius R(t) follows :

dR

dt
= DVn

NAR(t) (n∞ − HP0N2)

Here n∞ = 1.1 × 1023 m−3, T = 310 K, D = 2 × 10−9 m2.s−1, Rig = 8.3 J.K−1.mol−1 and P0N2 = 0.8 bar.
Q19. Demonstrate that the bubble will indeed grow, then define and determine the value of the duration
∆t for it to grow to R0 = 1 cm. Comment your result in regards of previous results for diffusion of dissolved
N2 in cartilage.
In our model, the diver suddenly reached the surface : the concentration of dissolved N2 initially remained
the one at equilibrium for z = z0 (before the diffusion of the II.2 significantly occurs), but the partial pressure
P0N2 in N2 dropped causing this rapid bubble growth. To avoid such a dangerous drop, divers ascend from the
depths in discrete stages, stopping during tens of minutes (this duration depending notably on the maximum
depth and on the duration spent at this maximum depth).
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